

Technical Information

PLUS+1® Controllers MC0XX-0XX Controller Family

Revision history

Table of revisions

Date	Changed	Rev
March 2017	Changed module name, HMC-211-010/112; Changed name of manual, from PLUS+1 Controller Family to PLUS+1 MC0XX-0XX Controller Family.	1802
December 2016	Added input impedance for analog inputs	1801
July 2016	Updated DIN/AIN/FreqIN; Din/AIN/FreqIN/Rheo Specifications table; Din/AIN/FreqIN Specifications table; added link to MC038-010 sleep mode in first bullet under MC038-010 power supply; updated to Engineering Tomorrow design	1701
May 2015	Revised note regarding pin C1p26	QA
February 2014	MC050-055/05B input voltage maximum is limited to 16 Vdc	РВ
January 2014	Converted to Danfoss layout	PA
June 2005 to September 2013	Various updates	BA through OA
March 2004	First edition	AA

Contents

MC0XX-0XX Contro	oller Family literature references	
	Technical Information (TI)	4
	Module product Data Sheet (DS)	4
	API specifications (API)	
	PLUS+1® GUIDE User Manual	4
User liability and s	safety statements	
	OEM responsibility	5
Overview		
	MC0XX-0XX Controller Family	6
Inputs/outputs typ	pes and specifications	
	Input types	
	DIN	
	AIN	
	High range input impedance for analog inputs	g
	Analog input offset	
	A/D refresh rate	
	AIN/Temp/Rheo; DIN/AIN/FreqIN/Rheo	
	DIN/AIN/FreqIN; DIN/AIN/FreqIN/Rheo	
	DIN/AIN/FregIN	
	DIN/AIN/4-20 mA IN	
	Output types	15
	DOUT and DOUT/PVEpwr	
	HDOUT	
	PWMOUT/DOUT/PVGOUT	17
	HPWMOUT/DOUT	
	MC038-010, MC088-XXX output pin power supply	19
Controller Area Ne	etwork (CAN)	
Controller Area ive	CAN system design	20
	Specifications for terminating resistor	
	Notes on CAN Bus installation	
	Expansion module CAN Bus loading	
	Expansion module critic bus loading	
Product ratings	_	
	Power	
	Module supply voltage/maximum current ratings	
	MC038-010 power supply	
	MC038-010 sleep mode	
	Sensor power supply ratings	
	PVG valve power supply ratings	
	EEPROM write/erase ratings	
	Vault memory	
	FRAM memory	
	Environmental testing criteria	
	MC Controllers general ratings	
	Modules housing	26
Product installatio	on and start-up	
	Connectors	27
	Mounting	28
	Machine diagnostic connector	28
	Grounding	29
	Hot plugging	29
	Machine wiring guidelines	29
	Machine welding guidelines	
	PLUS+1® USB/CAN Gateway	30

MC0XX-0XX Controller Family literature references

Literature title	Document type	Literature ID
MC0XX-0XX Controller Family Technical Information	User Guide	520L0719
MCOXX-OXX Controllers Data Sheets	Data Sheet	*
PLUS+1° GUIDE Software User Manual	Operation Guide	10100824

^{*} Data Sheets for 12, 18, 24, 38, 50, and 88 pin models, go to http://www.powersolutions.danfoss.com/products/ Electronic-components/.

Comprehensive technical literature online at powersolutions.danfoss.com

Technical Information (TI)

A TI is comprehensive information for engineering and service personnel to reference.

Module product Data Sheet (DS)

A module product DS contains summarized information and parameters that are unique to an individual PLUS+1° module, including:

- Numbers and types of inputs and outputs
- Module connector pin assignments
- Module maximum current capacity
- · Module sensor power supply (if present) current capacity
- Module installation drawing
- · Module weights
- Product ordering information

API specifications (API)

Module API specifications contain detailed information about the module BIOS. PLUS+1* BIOS functionality is pin dependent. Pins are defined in module data sheets as C (connector number) p (pin number).

API specifications include:

- Variable name
- Variable data type
- Variable direction (read/write)
- Variable function and scaling

Module API specifications are the definitive source of information regarding PLUS+1° module pin characteristics.

PLUS+1° GUIDE User Manual

This user operation manual (OM) details information regarding the PLUS+1 $^{\circ}$ GUIDE tool set that is used to build PLUS+1 $^{\circ}$ applications. This OM covers the following broad topics:

- How to use the PLUS+1° GUIDE graphical application development tool to create machine applications
- How to configure module input and output parameters
- How to download PLUS+1° GUIDE applications to target PLUS+1° hardware modules
- How to upload and download tuning parameters
- How to use the PLUS+1® Service Tool

User liability and safety statements

OEM responsibility

The OEM of a machine or vehicle in which Danfoss products are installed has the full responsibility for all consequences that might occur. Danfoss has no responsibility for any consequences, direct or indirect, caused by failures or malfunctions.

- Danfoss has no responsibility for any accidents caused by incorrectly mounted or maintained equipment.
- Danfoss does not assume any responsibility for Danfoss products being incorrectly applied or the system being programmed in a manner that jeopardizes safety.
- All safety critical systems shall include an emergency stop to switch off the main supply voltage for
 the outputs of the electronic control system. All safety critical components shall be installed in such a
 way that the main supply voltage can be switched off at any time. The emergency stop must be easily
 accessible to the operator.

Overview

MC0XX-0XX Controller Family

PLUS+1° Mobile Machine Modules are designed to provide flexible, expandable, powerful and cost effective total machine management systems for a wide variety of vehicle applications.

These modules communicate with one another and other intelligent systems over a machine Controller Area Network (CAN) data bus.

PLUS+1° controller products utilize modular designs wherever possible. This modularity extends to product housings, connectors and control circuitry.

PLUS+1° hardware products are designed to be equally effective in a distributed CAN system, with intelligence in every node, or as stand-alone control for smaller machine systems.

PLUS+1° Compliant systems are incrementally expandable: additional modules can be easily added to the machine CAN bus to increase system capabilities or computational power.

Six standard housings, 12, 18, 24, 38, 50, and 88 pin, cover this product line.

PLUS+1° modules have input or output pins that support multiple functions. Pins that support multiple input or output types are user-configurable using PLUS+1° GUIDE software. Refer to product data sheets for the input/output (I/O) content of individual modules.

Input types

- Digital (DIN)
- · Digital or Analog (DIN/AIN)
- Analog or Temperature or Rheostat (AIN/Temp/Rheo)
- Multifunction: Digital or Analog or Frequency (DIN/AIN/FregIN)
- Multifunction: Digital or Analog or Frequency or Rheostat (DIN/AIN/FreqIN/Rheo)
- Fixed Range Analog or CAN shield (AIN/CAN shield)
- Digital or Analog or Current (DIN/AIN/4-20 mA IN)

Each PLUS+1° module input pin supports one of the above functional types. For pins with multiple functions, input configurations are user programmable using PLUS+1° GUIDE templates.

DIN

Digital inputs (DIN) connected to PLUS+1* dedicated digital input pins are debounced in software. Digital input debounce is defined as an input being in a given state for three samples before a state change is reported. The sample time is a function of application loop time.

Multifunction pins that are configured to be Digital input (DIN) are subject to the same update rates as the Analog input (AIN) function for that pin. Debounce is not used, as hysteresis is built into the function. The time to recognize a transition is dependent on the timing of the switch activation and the sample rate.

General response to input time

Description	Comment
Response to input below minimum voltage	Non-damaging, non-latching; reading saturates to the low limit.
Response to input above maximum voltage	Non-damaging, non-latching; reading saturates to the high limit.
Response to input open	Pin configuration dependent: No pull up/ no pull down = floating Pull up to 5 Vdc = 5 Vdc Pull down = 0 Vdc Pull up/ pull down = 2.5 Vdc
Voltage working ranges	Programmable (see specific data sheets for ranges).

DIN characteristics

Description	Units	Minimum	Maximum	Comment
Allowed voltage at pin	Vdc	0	36*	Modules will survive with full functionality if input voltage does not exceed 36 Vdc.
Rising voltage threshold	Vdc	2.80	4.15	A digital input is guaranteed to be read as high if the voltage is greater than 4.15 Vdc.
Falling voltage threshold	Vdc	1.01	2.77	A digital input is guaranteed to be read as low if the voltage is less than 1.01 Vdc.
Time to change state in response to step input	ms		1.5	Input change from maximum to minimum—add to debounce time.
Input impedance				

DIN characteristics (continued)

Description	Units	Minimum	Maximum	Comment
Input voltage < 5.7 Vdc	kΩ			233 nominal—no pull up or pull down pin configuration.
Input impedance				
Input voltage < 5.7 Vdc	kΩ			14.1 nominal—pull up or pull down pin configuration.
Input impedance				
Input voltage ≥ 5.7 Vdc	kΩ			14.1 nominal—all pin configurations.

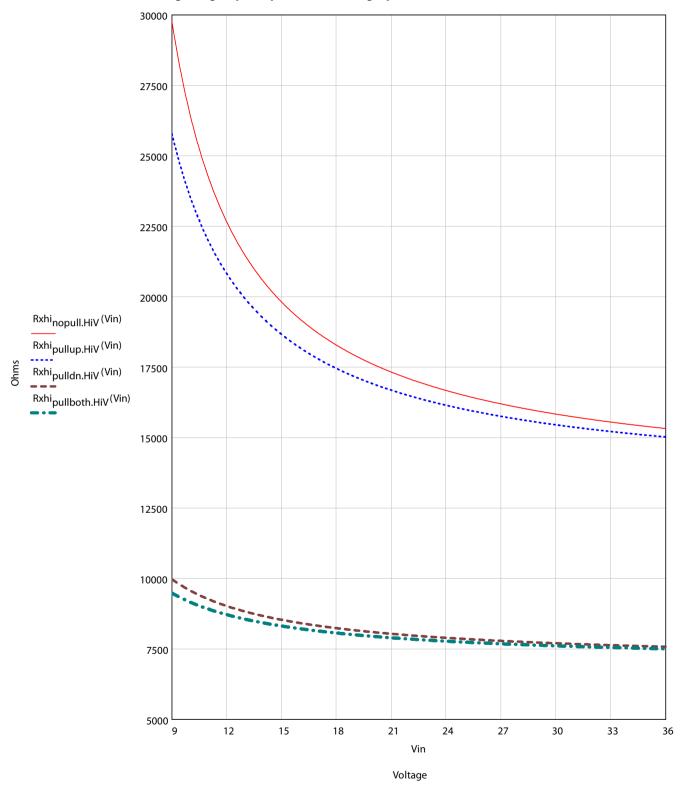
^{*} MC050-055/05B input voltage maximum is limited to 16 Vdc.

AIN

Analog inputs (AIN) specifications

Description	Units	Minimum	Maximum	Comment
Allowed voltage at pin*	Vdc	0	36**	
0 to 5 Vdc range maximum discernible voltage	Vdc	5.21	5.30	5.26 is typical.
0 to 36 Vdc range maximum discernible voltage	Vdc		31.70	
Precision	mV		1.28	
Input impedance	kΩ	206	236	Depends on pin configuration.

^{*} Maximum allowed voltage on fixed range analog input pins (CAN shield) is 25 Vdc.


For voltages > 5.7 V, see *High range input impedance for analog inputs* on page 9.

In high range the input impedance decreases as the input voltage increases.

^{**} MC050-055/05B input voltage maximum is limited to 16 Vdc.

High range input impedance for analog inputs

Analog input offset

Module analog input offset error can be 80 counts out of 4096 (12 bit resolution). Therefore, the minimum voltage that a module will read at the 0 to 5.25 Vdc range is 105 mV. The minimum voltage that a module will read at the 0 to 36 Vdc range is 703 mV.

The input offset error is a function of component tolerances and can vary from one module to the next. When an input value is used in an algorithm where the offset error could impact the control strategy, the way the signal is acquired and the need to calibrate should be considered.

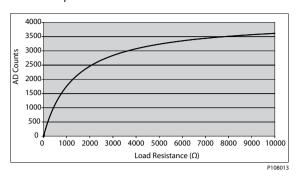
A/D refresh rate

Analog to Digital (A/D) refresh rates for individual PLUS+1° modules are listed in the following table. A/D channels are sampled at 25 kHz and 64 samples are taken to build an average value. This results in a refresh rate of 2.56 ms for channels directly measured. All internal current feedback channels are refreshed at the 2.56 ms rate.

Some PLUS+1* module A/D channels are shared. Each of the shared channels have eight multiplexed analog inputs. Each multiplexed input is serviced every 20.48 ms. Update rates for specific analog input pins are found in the following table. Update rates for input expander modules are dependent on the CAN message frequency selected in the application program.

A/D refresh rates for PLUS+1° modules

PLUS+1° module	A/D refresh rate	
MC012-010/012	All: 2.56 ms	
MC012-026/029	All: 2.56 ms	
HMC-211-010/012	All: 2.56 ms	
MC024-010/011/012/014	All: 2.56 ms	
MC024-020/021/022/024	C1p10 to C1p12: 7.68 ms Remaining pins: 2.56 ms	
MC024-500	All: 2.56 ms	
MC038-010	C1p08, C1p14, C1p17 to C1p20, C1p24 to C1p27, C1p36 to C1p38: 20.48 ms C1p05, C1p10 to C1p12: 2.56 ms	
MC050-010/012	C1p05, C1p08, C1p14 to C1p19, C1p22 to C1p30, C1p34 to C1p36: 20.48 ms C1p02: 2.56 ms	
MC050-020/022	C1p05, C1p22, C1p25 to C1p32, C1p39, C1p40: 20.48 ms C1p02, C1p08, C1p18, C1p19, C1p23, C1p24: 2.56 ms	
MC050-055/05B	C1p05, C1p13 to C1p29, C1p31 to C1p39, C1p41 to C1p45: 20.48 ms C1p46 to C1p49: 2.56 ms	
MC088-015/01B/315	C1p05, C1p08, C1p14 to C1p19, C1p22 to C1p30, C1p34 to C1p36, C1p47 to C1p50, C2p09 to C2p11, C2p35 to C2p38: 20.48 ms	
IOX012-010	Refresh rate is a function of CAN message frequency	
IOX024-020	Refresh rate is a function of CAN message frequency	
IX012-010	Refresh rate is a function of CAN message frequency	
IX024-010	Refresh rate is a function of CAN message frequency	


AIN/Temp/Rheo; DIN/AIN/FreqIN/Rheo

Analog/Temperature/Rheostat (AIN/Temp/Rheo); Digital/Analog/Frequency/Rheostat (DIN/AIN/FreqIN/Rheo).

When a PLUS+1 $^{\circ}$ module input pin is configured in the temperature/rheostat mode, the input has a 1.33 k Ω pull up resistor to +5 Vdc. It will source up to 3.75 mA current to an external load (RL) which then can be measured. The equation for relating AD counts to a given load is: AD counts = (4096*RL) / (RL + 1330). This calculation is solved internally and the ohms value is available for the programmer. The following chart shows the relationship between AD counts and load resistance in ohms.

Rheostat inputs

Specifications

Description	Units	Minimum	Maximum	Comment
Allowed voltage at pin	Vdc	0	36	
Measured resistance	Ω	0	10000	

DIN/AIN/FreqIN; DIN/AIN/FreqIN/Rheo

All modules except IX012-010, IX024-010.

The characteristics of Digital/Analog/Frequency (DIN/AIN/FreqIN) pins are PLUS+1° GUIDE software controlled. The input can be digital, analog or frequency.

Inputs can be pulled to 5 Vdc, pulled to ground, pulled to 2.5 Vdc, or no pull-up/pull-down.

General

Description	Comment
Response to input below minimum voltage	Non-damaging, non-latching; reading saturates to the low limit.
Response to input above maximum voltage	Non-damaging, non-latching; reading saturates to the high limit.
Expected measurement	Frequency (Hz)
	Period (0.1 μsec)
	Channel to channel phase shift (paired inputs) (0.1 ms).
	PWM duty cycle (0.01%)—Duty cycle measurement only valid up to 5 kHz (FreqIN).
	xEdge count.
	Quadrature count (paired inputs driven from a quadrature encoder).
Pull up/pull down configuration	No pull down/ pull up is standard with pull up or pull down programmable; failure modes are detectable.

As with analog input pins, values in the following table assume software compensation for AD converter offset errors.

Specifications

Description	Units	Minimum	Maximum	Comment
Allowed voltage at pin	Vdc	0	36	
Frequency range	Hz	0	10000	In steps of 1 Hz.
Maximum discernible voltage (high range)	Vdc	34.62	35.91	35.3 Vdc is typical.

Specifications (continued)

Description	Units	Minimum	Maximum	Comment
Maximum discernible voltage (middle range)	Vdc	5.18	5.33	5.26 Vdc is typical.
Maximum discernible voltage (low range)	Vdc	0.360	0.375	0.368 Vdc is typical.
Precision (high range)	mV		8.62	
Worst case error (high range)	mV		614	
Precision (middle range)	mV		1.28	
Worst case error (middle range)	mV		75	
Precision (low range)	μV		89.7	
Worst case error (low range)	mV		7.39	
Input impedance (pulled to 5 Vdc or ground, middle and low range)	kΩ	13.9	14.3	
Input impedance (pulled to 2.5 Vdc middle and low range)	kΩ	7.17	7.37	
Input impedance (no pull ups, middle and low range)	kΩ	230	236	
Input impedance (pulled to 5 Vdc or ground, high range)	kΩ	13.0	13.4	
Input impedance (pulled to 2.5 Vdc high range)	kΩ	6.92	7.12	
Input impedance (no pull ups, high range)	kΩ	108	112	
Rising voltage threshold (high range)	Vdc		27.6	It is inadvisable to use the high range option when configuring the input as a digital or frequency input.
Falling voltage threshold (high range)	Vdc	6.8		It is inadvisable to use the high range option when configuring the input as a digital or frequency input.
Rising voltage threshold (middle range)	Vdc		4.27	Voltage required for frequency input to read high.
Falling voltage threshold (middle range)	Vdc	0.96		Voltage required for frequency input to read low.
Rising voltage threshold (low range)	Vdc		0.298	Voltage required for frequency input to read high.
Falling voltage threshold (low range)	Vdc	0.071		Voltage required for frequency input to read low.

MC050-010 and MC050-018 pin C1p26 should not be configured as a FreqIN.

Recommendation is to not use pin C1p26 as a frequency input. If used, recommendation is to disable internal filtering and use filter inside the application instead.

DIN/AIN/FreqIN

The characteristics of Digital/Analog/Frequency (DIN/AIN/FreqIN) pins are PLUS+1® GUIDE software controlled. The input can be digital, analog or frequency.

Inputs can be pulled to 5 Vdc, pulled to ground, pulled to 2.5 Vdc, or no pull-up/pull-down.

Analog to digital resolution is 10 bits.

As with analog input pins, values in the following table assume software compensation for the errors in the AD converter.

Specifications

Description	Units	Minimum	Maximum	Comment
Allowed voltage at pin	Vdc	0	36	
Frequency range	Hz	0	10000	In steps of 1 Hz.
Maximum discernible voltage (high range)	Vdc	35.3	36	36 Vdc is typical.
Maximum discernible voltage (middle range)	Vdc	5.67	5.83	5.75 Vdc is typical.
Maximum discernible voltage (low range)	Vdc	0.440	0.456	0.448 Vdc is typical.
Minimum discernible voltage	Vdc	0	0.08	
Precision (high range)	mV		36.5	
Worst case error (high range)	mV		614	
Precision (middle range)	mV		5.62	
Worst case error (middle range)	mV		75	
Precision (low range)	μ V		438	
Worst case error (low range)	mV		7.39	
Input impedance (pulled to 5 Vdc or ground, middle and low range)	kΩ	13.9	14.3	
Input impedance (pulled to 2.5 Vdc middle and low range)	kΩ	7.17	7.37	
Input impedance (no pull ups, middle and low range)	kΩ	230	236	
Input impedance (pulled to 5 Vdc or ground, high range)	kΩ	10.3	10.7	
Input impedance (pulled to 2.5 Vdc high range)	kΩ	6.07	6.27	
Input impedance (no pull ups, high range)	kΩ	36.4	38.4	
Rising voltage threshold (high range)	Vdc		27.6	It is inadvisable to use the high range option when configuring the input as a digital or frequency input.
Falling voltage threshold (high range)	Vdc	6.8		It is inadvisable to use the high range option when configuring the input as a digital or frequency input.

© Danfoss | March 2017

Specifications (continued)

Description	Units	Minimum	Maximum	Comment
Rising voltage threshold (middle range)	Vdc		4.27	Voltage required for frequency input to read high.
Falling voltage threshold (middle range)	Vdc	0.96		Voltage required for frequency input to read low.
Rising voltage threshold (low range)	Vdc		0.298	Voltage required for frequency input to read high.
Falling voltage threshold (low range)	Vdc	0.071		Voltage required for frequency input to read low.

Potential for IX modules to not go online. If voltage is applied to an IX module input pin prior to the module being powered on, there is a possibility that the module CPU will not power up. The module is not damaged and will power up and operate normally once power is removed from the input pins. It is recommended that either the IX module's 5 Vdc sensor power be used to power sensors or that power is removed from the input pins until the module is powered up.

If the frequency goes to zero, the data will not decay over time, it will be updated once a new pulse is seen, or times out. It is possible to monitor the count of pulses to know when the frequency reading is updated.

DIN/AIN/4-20 mA IN

Digital/Analog/4-20 mA (DIN/AIN/4-20 mA IN).

Refer to *DIN/AIN/FreqIN* on page 13, for input properties when pins are configured as digital, analog or frequency. If the pin is configured to read current, the table below applies. When interfacing with sensors that transmit a 4 to 20 mA current signal, the positive lead of the transmitter is connected to battery voltage and the negative lead is connected to the PLUS+1° module pin. The current measuring configuration relies on the application program to provide over current protection.

The current measuring configuration is only available on MC088-XXX modules.

Specifications

Description	Units	Minimum	Maximum	Comment
Allowed voltage at pin	Vdc	0	36	
Minimum input current	mA	3	4	
Maximum input current	mA	20	24	
Precision	μΑ		5.86	

Output types

- Digital (DOUT)
- Digital/PVG valve reference power (DOUT/PVGpwr)
- High current digital (HDOUT)
- Pulse width modulated (PWM/DOUT/PVGOUT)
- High current (6 A) pulse width modulated (HPWMOUT/DOUT)
- High current (10 A) pulse width modulated (HPWMOUT/DOUT)

Output pins available on PLUS+1° Controller Family

PLUS+1° module	DOUT (2A)	DOUT (3 A)	HDOUT (6 A)	DOUT/PVGpwr (3 A)	PWMOUT/ DOUT/PVGOUT (3 A)	HPWMOUT/ DOUT (6 A)	HPWMOUT/ DOUT (10 A)
MC012-010/012					2		
MC012-026/029					2		
HMC-211-010/01 2	4				2		
MC024-010/011/ 012/014					4		
MC024-020/021/ 022/024					8		
MC038-010	2		3			3	5
MC050-010/012		3		3	10		
MC050-020/022		6		2	6		
MC050-055/05B		1			2		
MC088-015/01B		13	6	3	10		
IOX012-010					2		
IOX024-020					8		
OX012-010					6		
OX024-010		4		2	10		

PLUS+1° modules feature user-configurable output pin parameters. Output pin parameters are configured using PLUS+1° GUIDE templates.

Refer to module data sheets for maximum output current ratings of individual modules and MC038-010 and MC088-015/01B power planes. The total output current for any PLUS+1° module must not exceed the maximum allowable current specified in the module data sheet. In the case of MC038-010 and MC088-015/01B modules, both the total output current for an individual power plane and the total output for the module must not exceed the limits specified on the module data sheets.

Warning

Unintended movement of the machine or mechanism may cause injury to the technician or bystanders. The module will be powered up if battery voltage is applied to the module's output pin. To protect against unintended movement, secure the machine.

CAUTION

Warranty will be voided if module is damaged. Avoid significant current driven back through an input pin.

DOUT and DOUT/PVEpwr

Digital (DOUT) and Digital/PVG Reference Power (DOUT/PVEpwr).

Digital outputs can source up to 3 A. The exception is MC038-010 controller, DOUT pins are limited to 2 A.

- Current outputs for MC050-010, MC050-020, MC088-015, and OX024-010 module
- DOUT and DOUT/PVG Pwr pins are pair limited and a function of temperature.

Output per pair is: 6 A maximum at 25 C [77 F]. Output per pair is 4 A maximum at 70° C [158° F]

- MC050-010 pairs are: C1p31 and C1p32, C1p33 and C1p34, C1p35 and C1p36
- MC050-020 pairs are: C1p33 and C1p34, C1p35 and C1p36, C1p37 and C1p38, C1p39 and C1p40
- MC088-015 pairs are:

Power plane C2p35: C1p31 and C1p32, C1p33 and C1p34

Power plane C2p36: C1p35 and C1p36

Power plane C2p37: C2p1 and C2p7, C2p2 and C2p3, C2p4 and C2p5, C2p30 and C2p33

Power plane C2p38: C2p6 and C2p12

- OX024-010 pairs are: C1p6 and C1p7, C1p8 and C1p9, C1p10 and C1p11
- Example: at a module temperature of 70° C [158° F], if C1p31 is sourcing 2.5 A, the most current that can be sourced on its paired pin C1p32 is 1.5 A

General

Description	Comment
Configuration	Sourcing only.
Туре	Linear switching.
Short circuit to ground protection	Non-damage, current/thermal limit with status indication; automatic latch off /resume.
Open circuit detection	Fault indication provided. The GUIDE Pin Status requires a load of 500 mA to be connected or an open fault will be declared.
Parallel operation	Digital outputs from the same module are capable of being connected together such that the net current rating is the sum of the individual ratings; timing is resolved by the operating system; diagnostic capability is maintained.
Shut off	Processor control with hardware WatchDog override.

Specifications

Description	Units	Minimum	Maximum	Comment
Allowed voltage at pin	Vdc	0	36	Reference warning statement in topic <i>HDOUT</i> on page 17.
Output voltage, energized state	Vdc	Vbatt-1.0	Vbatt	Over all load conditions.
Output voltage, off state	Vdc	0	0.1	At Rload=200 Ω
Output current range for a status bit to read OK	А	0.5	3	Refer to the note above regarding pair.

Do not connect a digital output to battery+ (back drive) without a series diode.

HDOUT

High Current Digital (HDOUT)

High current digital outputs can source up to 6 A.

General

Description	Comment
Configuration	Sourcing only.
Туре	Linear switching.
Short circuit to ground protection	Non-damage, current/thermal limit with status indication; automatic latch off/resume.
Open circuit detection	Status indication provided. The GUIDE pin status requires a load of 1000 mA to be connected or an open status will be declared.
Parallel operation	Digital outputs from the same module are capable of being connected together such that the net current rating is the sum of the individual ratings: timing is resolved by the operating system and diagnostic capability is maintained.
Shut off	Processor control with hardware Watchdog override.

Specifications

Description	Units	Minimum	Maximum	Comment
Allowed voltage at pin	Vdc	0	36	See caution statement below.
Output voltage, energized state	Vdc	Vbatt-1.0	Vbatt	Over all load conditions.
Output voltage, off state	Vdc	0	0.1	At Rload=200 Ω
Output current range for status bit to read OK	А	1	6	See pair comment above.

Warning

Unintended movement of the machine or mechanism may cause injury to the technician or bystanders. DOUT and HDOUT digital outputs do not have an internal feedback to the PLUS+1° module kernel. To protect against unintended movement, if the application requires fault detection, an external feedback using an AIN configured pin must be used.

External feedback is required if the actual output is to be read by the PLUS+1° Service Tool.

All other output types have internal feedback to the PLUS+1° module kernel that provide pin fault and status information that can be read directly by the application and the PLUS+1° Service Tool.

PWMOUT/DOUT/PVGOUT

All PLUS+1° module proportional outputs are Pulse Width Modulated (PWM). PWM frequency is software adjustable using PLUS+1° GUIDE. A low frequency dither may also be added with software to some outputs (see individual module API specifications for PWM outputs that support dither). There are two modes of PWM operation: open loop and closed loop (current control).

In open loop mode, current can be sourced or sunk (all modules are limited to 8 amps sinking), but the output is a PWM duty cycle. Current feedback may be monitored in open loop mode, but the output is a constant voltage, not a constant current. PVG valves may be driven with open loop PWM.

In closed loop mode, current is sourced and a constant current is maintained by the module's operating system using internal current feedback. Load impedance must not exceed 65 ohms.

In closed loop mode, current is sourced and a constant current is maintained by the module's operating system using internal current feedback. Load impedance must not exceed 65 ohms.

In closed loop mode, the maximum current is limited by measuring the feedback current. There is no thermal protection. If the maximum current is exceeded, the controller kernel will shut down the output and latch it. The kernel also limits how quickly the output can be repowered (250 ms). The output cannot be reset until the command goes to 0 or False (if configured as a digital output).

Proportional outputs that are used as a digital sinking output have a potential for a leakage current of up to 5 mA when off.

Refer to individual module data sheets for the maximum allowable output current for each PLUS+1° module.

General

Description	Comment
Configuration	Sourcing or sinking
Type (Linear vs. PWM)	PWM
Operating modes	Programmable: closed loop current or open loop voltage (duty cycle)
Dual coil PCPs	Compensated for induced currents in a non-driven coil (closed loop mode)
Short circuit to ground	Output fully protected against damage and fault detected
Mode selection (current or voltage) and full scale current ranges	Programmable

Do not connect a digital output to battery+ (back drive) without a series diode.

PLUS+1° PWM output circuits are not designed to be used as inputs. Output current feedback readings should be used for fault checking only.

Warning

Unintended movement of the machine or mechanism may cause injury to the technician or bystanders. The module will be powered up if battery voltage is applied to the module's output pin. To protect against unintended movement, secure the machine.

CAUTION

Warranty will be voided if module is damaged. Avoid significant current driven back through an input pin.

Specifications

Description	Units	Minimum	Maximum	Comment
Full scale proportional current output	mA	10	3000	The current may accidentally be exceeded in open loop mode. If the current exceeds the trip point, the output will be latched off.
Output voltage, 100% duty cycle	Vdc	0	Vbatt-1	
Output resolution of 3 A	mA		0.25	
Repeatability of full range	% of full scale		0.5	
Absolute accuracy of full range	% of full scale		0.5	
Output settling time	ms		100	Depends on load characteristics.
PWM frequency	Hz	33	4000	Some pins have a fixed frequency, consult module application program interface (API).

Specifications (continued)

Description	Units	Minimum	Maximum	Comment
Dither frequency	Hz	33	250	Increased in steps, see module API.
Dither amplitude	А	0	0.5	Increased in steps, see module API.
Over-current trip point	A	5	5.25	There is over-current protection built into each output driver. If the instantaneous current exceeds the trip point, the driver is latched off. GUIDE application software can reset the latch and attempt to drive current again.

HPWMOUT/DOUT

High Current Pulse Width Modulated (HPWMOUT/DOUT).

High current proportional outputs are unique to the MCO38-010 controller. These outputs are PWM, with PWM frequency user-configurable using PLUS+1° GUIDE.

The MC038-010 has two types of high current PWM outputs:

- · Paired bi-directional PWMs (10 A) that can be configured as either H bridges or independent outputs.
- Sourcing only PWMs (one 10 A and six 6 A).

See the product data sheet and API documents for pair assignments.

All high current proportional outputs are operated as open loop. The controller kernel does, however, monitor current for circuit protection, but there is no current feedback to the application. The output is a constant voltage and not a constant current. PWM outputs are hardware protected from short or over current.

Specifications

Description	Units	Minimum	Maximum	Comment
Over-current trip point, 6 A	Α		12	Temperature dependent.
Over-current trip point, 10 A	A		18	Temperature dependent.
PWM frequency	Hz	33	4000	

MC038-010, MC088-XXX output pin power supply

The output pin power supply design of the MC038-010 and MC088-XXX controllers is different from that of other PLUS+1° modules. MC038-010 and MC088-XXX controllers have discrete power supply planes for output pins and a separate dedicated power supply for the DSP. Each output pin is associated with a specific power supply plane. Refer to the controller data sheets for a map of outputs and their associated power plane.

The controller DSP will be powered if power is supplied to any one of the controller's power planes.

Controller Area Network (CAN)

CAN system design

All PLUS+1° modules have CAN ports that conform to CAN 2.0B specifications, including CAN shield.

CAN1 port and CAN2 port on MC050-155/15B controllers cannot be used to download PLUS+1° GUIDE application programs.

Specifications for terminating resistor

Each end of the main backbone of the CAN bus must be terminated with an appropriate resistance to provide correct termination of the CAN_H and CAN_L conductors. This termination resistance should be connected between the CAN_H and CAN_L conductors.

Specifications

Description	Units	Minimum	Maximum	Nominal	Comment
Resistance	Ω	110	130	120	Minimum power dissipation 400 mW (assumes a short of 16 Vdc to CAN_H).
Inductance	μН		1		

Notes on CAN Bus installation

Total bus impedance should be 60Ω .

The CAN transceiver will be damaged by any voltage outside of allowable range, (-7 to +36 Vdc), even with a very short pulse.

If using shielded cable, the shield must be grounded to the machine ground at one point only; preferably at the mid-point of the CAN bus. Each PLUS+1° module CAN shield pin must be connected to the cable shield.

Expansion module CAN Bus loading

System designers incorporating PLUS+1* expansion modules in their applications should be aware of PLUS+1* CAN bus loading and controller memory usage during system design. Each expansion module is associated with a PLUS+1* controller and uses part of the controller's memory resources for inter-module communications. The following table can be used to estimate system CAN bus loading and the memory impact of I/O modules on their associated controller.

Estimated usage of memory and communication resources

Description	IX012-010	IX024-010	OX012-010	OX024-010	IOX012-010	IOX024-20
Estimated module bus load (using default update and 250K bus speed)	4%	10%	11%	27%	11%	27%
Estimated module bus load (using 70 ms updates and 250K bus speed)	2%	5%	3%	8%	4%	8%
RAM usage on MC012-XXX	9%	12%	9%	14%	9%	17%
RAM usage on MC024-010	9%	12%	9%	14%	9%	17%

Controller Area Network (CAN)

Estimated usage of memory and communication resources (continued)

Description	IX012-010	IX024-010	OX012-010	OX024-010	IOX012-010	IOX024-20
RAM usage on MC050-010, MC050-020	1%	1%	1%	2%	1%	2%
RAM usage on MC050-055	1%	1%	1%	2%	1%	0%
ROM usage on MC012-XXX	8%	11%	12%	18%	10%	19%
ROM usage on MC024-010	8%	11%	12%	18%	10%	20%
ROM usage on MC050-010, MC050-020	3%	4%	4%	6%	3%	8%
ROM usage on MC050-055	3%	4%	4%	6%	3%	8%

Power

Module supply voltage/maximum current ratings

PLUS+1° modules are designed to operate with a nominal 9 to 32 Vdc power supply.

The modules will survive with full functionality if the supply voltage remains below 36 Vdc.

Specifications

Description	Units	Minimum	Maximum	Comment
Allowed voltage at pin	٧	0	36	
Allowed module current	А	0		Consult module data sheets for maximum allowable current.

MC038-010 power supply

The MC038-010 controller's power supply design recommendations must be followed:

- Power supply to MC038-010 controller's output power planes (C1-p36 to C1-p38) must be wired directly to the vehicle battery (see MC038-010 sleep mode on page 22) and the wiring runs must be kept as short as possible.
- Power supply to the controller's DSP (C1-p2) must be wired separately from the power supply to the controller's output power planes.
- Do not connect any other PLUS+1° controllers to the power supply to MC038-010 controller's output power planes.

MC038-010 sleep mode

Sleep mode is unique to the MC038-010 controller. This feature gives OEM designers the ability to implement automotive-like features in their machine control system design. If the sleep mode feature is not implemented, this controller has the same operating characteristics as any other PLUS+1° controller.

When used as a sleep mode controller, supply power to the MC038-010 is connected directly to the battery. Sleep mode initiation is defined by the controller's application software: PLUS+1* GUIDE programmers define the conditions under which the controller is to put to sleep. When in sleep mode, controller outputs are set to zero, sensor power supply is off and the controller consumes a small amount of current.

Controller sleep mode current consumption

Supply voltage	Sleep mode current consumption
12 Vdc	0.14 mA
24 Vdc	0.28 mA

Battery power must be supplied to designated wake-up digital inputs, since the controller's 5 Vdc regulated power supply is not available when the controller is in sleep mode.

Either of two conditions will wake up the controller:

- Switching any of the designated wake-up digital inputs (DIN) in the PLUS+1° GUIDE application, to high
- Cycling all input power to the controller

The following input pins may be designated as wake-up digital inputs:

- DIN (C1p06, C1p07)
- DIN/AIN (C1p14, C1p17 to C1p20, C1p24 to C1p27

Specifications

Description	Units	Minimum	Maximum	Comment
Wake-up pin threshold	Vdc	2	36	To wake up by cycling input power.
Wake-up pin threshold	Vdc	4.5	36	To wake up by digital input.
Wake-up time delay	ms	250	500	

Sensor power supply ratings

PLUS+1* modules that support sensor inputs are provided with dedicated, software adjustable, regulated sensor power supply and ground pins. Refer to individual product data sheets for sensor power supply current ratings.

The sensor power is nominally 5 Vdc, unless otherwise noted on the product data sheet.

General

Description	Comment
Short circuit to ground	Output is not damaged and fault is detected.
Short circuit to battery +	Output is not damaged and fault is detected.

Specifications (all modules except MC050-055/05B)

Description	Units	Minimum	Maximum	Comment
Output short circuit voltage	Vdc		36	
Output voltage	Vdc	4.88	5.12	
Output current	mA			Refer to individual data sheets for sensor power supply ratings.
Output Load Capacitance	μF		10	
Hold up time after power loss	m s	5	15	

MC050-055/05B controllers feature two additional levels of regulated power: 1.6 Vdc and 3.3 Vdc. The PLUS+1* GUIDE application developer can detect open and short digital inputs, when these power supplies are used in conjunction with DIN/AIN inputs.

Specifications (MC050-055/05B)

Description	Units	Minimum	Maximum	Comment
Output short circuit voltage	Vdc		36	
Output voltage, sensors	Vdc	4.88	5.12	Sensor power supply drops below minimum if controller power supply is less than 9 Vdc.
Output voltage, DIN diagnostics	Vdc	1.54	1.66	Nominal 1.6
Output voltage, DIN diagnostics	Vdc	3.00	3.60	Nominal 3.3

PVG valve power supply ratings

DOUT/PVGpwr pins can provide the battery supply voltage required by Danfoss PVG valve electronics for those control strategies requiring application software control of the valve power source.

When enabled, the DOUT/PVGpwr pin passes battery (reference) voltage to the PVG valve electronics. One DOUT/PVGpwr pin can power up to 3 PVG valves. Refer to individual module API documents for PVG power pin characteristics.

EEPROM write/erase ratings

To prevent unexpected memory writes, care must be taken to ensure memory with a high number of read/write cycles is either U32 or S32 data types.

Write/erase cycles

Description	Minimum	Maximum	Comment
EEPROM write/erase cycles	1 million		Minimum valid over entire operating temperature
			range.

EEPROM used in PLUS+1° controllers is rated for one million read/write cycles per sector. Sector size is 32 bits. When a value is written to EEPROM, all 32 bits in a particular sector are always written, regardless of the size of the size of the saved value. If the value being saved in a sector is less than 32 bits (such as U8, S16, BOLL) adjacent bits in the same EEPROM sector are rewritten with their previous value. The implication of this memory property is that if two values are being written to the same memory sector, the useful life of the sector is determined by the value being written most frequently. If that value exceeds 1 million read/write cycles, all values in the sector may be compromised if the useful life is exceeded.

Vault memory

Some variants of PLUS+1* modules have 2 Mbyte of serial flash vault memory (also referred to as application logging memory).

Application developers can use this memory to log machine event data and use the PLUS+1° Service Tool to extract the logged data. As there is no real time clock on PLUS+1° modules, vault memory is not time stamped.

Accessing non-volatile or application log memory can delay the service tool scan.

FRAM memory

Any of the PLUS+1° extended memory controllers use FRAM memory. FRAM has a write endurance of over 100 trillion cycles (over entire operating temperature range). This increased write endurance is particularly ideal for datalogging.

Accessing non-volatile or application log memory can delay the service tool scan.

Environmental testing criteria

Climate environment

Description	Applicable standard	Comment
Storage temperature	IEC 60068-2-1, test Ab, IEC 60068-2-2 test Bb	
Operating temperature	IEC 60068-2-1, test Ab, IEC 60068-2-2 test Bd	
Thermal cycle	IEC 60068-2-2, test Na, IEC 60068-2-38 (partial)	
Humidity	IEC 60068-2-78, IEC 60068-2-30 test Db	Damp heat steady state and cyclic.
Degree of protection	IEC 60529	

Chemical environment

Description	Applicable standard	Comment
Salt mist	IEC 60068-2-58 test Kb	
Chemical resistance	ISO 16750-5	

Mechanical environment

Description	Applicable standard	Comment
Vibration	IEC 60068-2-6 test Fc, IEC 6008-2-64 test Fh	
Bump	IEC 60068-2-29 test Eb	
Shock	IEC 60068-2-27 test Ea	
Free fall	IEC 60068-2-32 test Ed	

Electrical/electromagnetic

Description	Applicable standard	Comment
EMC emission	ISO 13766, SAE J1113-13	Electromagnetic compatibility for earth moving machinery.
EMC immunity	ISO 13766	Electromagnetic compatibility for earth moving machinery.
Electrostatic discharge	EN 60-1 000-4-2	
Auto electrical transients	ISO 7637-2, ISO 7637-3	
Short circuit protection	Danfoss test	Inputs and outputs survive continuous short circuit. Normal function resumes when short is removed.
Reversed polarity protection	Danfoss test	Survives reverse polarity at supply voltage for at least five minutes.

MC Controllers general ratings

Description	Units	Minimum	Maximum	Comment
Operating temperature	°C [°F]	-40 [-40]	70 [158]	Maximum operating temperature for MC012-026/029 modules is 105° C (221° F).
Storage temperature	°C [°F]	-40 [-40]	85 [185]	Maximum storage temperature for MC012-026/029 modules is 105° C (221° F).
Allowable module supply voltage	Vdc	9	36*	Minimum allowable supply voltage for the MC038-010 module CPU power pin is 6 Vdc.
Module sensor supply voltage	Vdc	4.8	5.2	Sensor voltage drops below the minimum value if module supply voltage < 9 Vdc. Exception for MC050-055/05B and MC024-01A, see Sensor power supply ratings on page 23.
Analog input voltage levels	Vdc		36 [*]	

© Danfoss | March 2017

Description	Units	Minimum	Maximum	Comment
Allowable output load current (per pin)	А			See individual module date sheets.
Module allowable total output current	А			See individual module data sheets.
All modules Ingress Protection (IP) rating**				IP 67
All modules CE rating				CE compliant.

^{*} MC050-055/05B input voltage maximum is limited to 16 Vdc.

Modules housing

PLUS+1° modules housing features a snap together assembly that is tamper-proof. Once assembled at the factory, the housing cannot be opened for service.

Opening the modules housing will void the factory warranty.

^{**} The PLUS+1* modules IP 67 rating is only valid when the module mating connector is in place and unused connector pin positions have sealing plugs installed.

Connectors

PLUS+1° modules use DEUTSCH connectors. Danfoss assembles mating connector kits, referred to as a bag assembly.

Mating connector bag assembly ordering information is found in module product data sheets.

DEUTSCH mating connector part information

Description	12 pin module	18 pin module	24 pin module	38 pin module	50 pin module	88 pin module	
Crimp tool	np tool HDT48-00(soli d contacts)(20 to 24 AWG)	HDT48-00(soli d contacts)(16 to 20 AWG)	HDT48-00(soli d contacts)(20 to 24 AWG)		HDT48-00(soli d contacts)(20 to 24 AWG)	HDT48-00(soli d contacts)(20 to 24 AWG, 12	
	DTT20-00(stam ped contacts) (16 to 20 AWG)		DTT20-00(stam ped contacts) (16 to 20 AWG)	DTT20-00(stam ped contacts) (16 to 20 AWG)	DTT20-00(stam ped contacts) (16 to 20 AWG)		
Contacts	Solid: 0462-201-2031 (20 to 24 AWG)	Solid: 0462-201-163 1(16 to 20	Solid: 0462-201-2031 (20 to 24 AWG)	Stamped: 0462-203-1214 1(10 to 14	Solid: 0462-201-2031 (20 to 24 AWG)	Solid: 0462-201-2031 (20 to 24 AWG)	
	Stamped: 1062-20-0144 (16 to 20 AWG)	AWG)	Stamped: 1062-20-0144(16 to 20 AWG)	1 AWG) 1062-20-0144(16 to 20 AWG)	Stamped: 1062-20-0144(16 to 20 AWG)	Solid: 0462-201-1214 1 (12 to 14 AWG)	
						Stamped: 1062-20-0144(16 to 20 AWG)	
Connector plug	Gray A-Key DTM 06-12SA	DT16-185B- K004	Gray A- KeyDTM 06-12SA Black B-Key DTM 06-12SB	DRC26-38S01- P017	DRC26-50S01	DRC26-50S01D RC26-38S01- P017	
Wedge	WM-12S	Not required	WM-12S	Not required	Not required	Not required	
Strip length 3.96 to 5.54 mm[0.156 to 0.218 in]	6.35 to 0.792 mm[0.250 to 0.312 in]	3.96 to 5.54 mm[0.156 to 0.218 in]	6.43 to 0.79 mm[0.253 to 0.031 in]	3.96 to 5.54 mm[0.156 to 0.218 in]	20 to 24 AWG: 3.96 to 5.54 mm[0.156 to 0.218 in]		
						12 to 14 AWG: 6.43 to 0.79 mm[0.253 to 0.031 in]	
	3.05 mm [0.120 in]		3.05 mm [0.120 in]	4.32 mm [0.17 in]	2.41 mm [0.095 in]	20 to 24 AWG: 2.41 mm [0.095 in]	
						12 to 14 AWG: 4.32 mm [0.17 in]	
Sealing plugs	0413-204-2005	114017	0413-204-2005	114017	0413-204-2005	0413-204-2005 , 114017	

Danfoss mating connector part information

Description	12 pin module	18 pin module	24 pin module	38 pin module	50 pin module	88 pin module
Mating connector bag assembly (20 to 24 AWG)	10100944		10100945		10100946	10105649
Mating connector bag assembly (16 to 20 AWG)	10102025	10102025	10102023	11027919	10102024	11071844

Danfoss crimp extraction tool part information

Description	Part number
Crimp tool for 20 to 24 AWG	10100745
Crimp tool for 16 to 20 AWG	10102028
Extraction tool DEUTSCH 114010; 12 AWG	11068808
Extraction tool DEUTSCH 0144-240-2005; 16 to 20, 20 to 24 AWG	10100744

Danfoss module mating connectors may be mated 10 times.

Recommended torque for the DEUTSCH mating connector retaining fastener on 38 and 50 pin connectors is 2.26 N·m (20 lb·in).

Mounting

PLUS+1° MC0XX-0XX 12, 24, 38, and 50 pin modules can be mounted in one of three ways:

- End (bulkhead) installation
- Up to 3 units stacked on one another
- Individually side mounted

HMC-211-0XX modules are designed for panel mounting only.

MC088-XXX modules are designed for bulkhead mounting only.

Care must be taken to insure that the module connector is positioned so that moisture drains away from the connector. Provide a drip loop in the harness. Provide strain relief for mating connector wires.

CAUTION

Module damage may occur.

Use caution when installing modules. Due to the size of the mating connector wire bundle, it is possible to twist off the end cap of the module if excessive pressure is applied during the installation of harness strain relief.

Fasteners

Recommended outer diameter (OD)	Recommended torque
6.0 mm	2.26 N•m

Machine diagnostic connector

It is recommended that a diagnostic connector be installed on machines that are controlled by PLUS+1° modules. The connector should be located in the operator's cabin or in the area where machine operations are controlled and should be easily accessible.

Communication (software uploads and downloads and service and diagnostic tool interaction) between PLUS+1° modules and personal computers is accomplished over the vehicle CAN network. The diagnostic connector should tee into the vehicle CAN bus and have the following elements:

- CAN +
- CAN -
- CAN shield

Grounding

Proper operation of any electronic control system requires that all control modules including displays, microcontrollers and expansion modules be connected to a common ground. A dedicated ground wire of appropriate size connected to the machine battery is recommended.

Hot plugging

Machine power should be off when connecting PLUS+1° modules to mating connectors.

Machine wiring guidelines

- Protect wires from mechanical abuse, run wires in flexible metal or plastic conduits.
- Use 85° C (185° F) wire with abrasion resistant insulation and 105° C (221° F) wire should be considered near hot surfaces.
- Use a wire size that is appropriate for the module connector.
- Separate high current wires such as solenoids, lights, alternators or fuel pumps from sensor and other noise-sensitive input wires.
- Run wires along the inside of, or close to, metal machine surfaces where possible, this simulates a shield which will minimize the effects of EMI/RFI radiation.
- Do not run wires near sharp metal corners, consider running wires through a grommet when rounding a corner.
- Do not run wires near hot machine members.
- Provide strain relief for all wires.
- Avoid running wires near moving or vibrating components.
- Avoid long, unsupported wire spans.
- Ground electronic modules to a dedicated conductor of sufficient size that is connected to the battery (-).
- Power the sensors and valve drive circuits by their dedicated wired power sources and ground returns.
- Twist sensor lines about one turn every 10 cm (4 in).
- Use wire harness anchors that will allow wires to float with respect to the machine rather than rigid anchors.

Warning

Unintended movement of the machine or mechanism may cause injury to the technician or bystanders. The module will be powered up if battery voltage is applied to the module's output pin. To protect against unintended movement, secure the machine.

CAUTION

Warranty will be voided if module is damaged. Avoid significant current driven back through an input pin.

Machine welding guidelines

The following is recommended when welding on a machine equipped with electronic components:

- Turn the engine off.
- Remove electronic components from the machine before any arc welding.
- Disconnect the negative battery cable from the battery.
- Do not use electrical components to ground the welder.
- Clamp the ground cable for the welder to the component that will be welded as close as possible to the weld.

Warning

High voltage from power and signal cables may cause fire or electrical shock, and cause an explosion if flammable gasses or chemicals are present.

Disconnect all power and signal cables connected to the electronic component before performing any electrical welding on a machine.

PLUS+1° USB/CAN Gateway

Communication (software uploads and downloads and service and diagnostic tool interaction) between PLUS+1° modules and a personal computer (PC) is accomplished using the vehicle's PLUS+1° CAN network.

The PLUS+1° CG150-2 USB/CAN gateway provides the communication interface between a PC USB port and the vehicle CAN bus. When connected to a PC, the gateway acts as a USB slave. In this configuration, all required electrical power is supplied by the upstream PC host. No other power source is required.

Refer to the PLUS+1* GUIDE Software User Manual, literature number 10100824, for gateway set-up information. Refer to the CG150-2 USB/CAN Gateway Data Sheet, literature number L1412468, for electrical specifications and connector pin details.

Products we offer:

- · Bent Axis Motors
- Closed Circuit Axial Piston Pumps and Motors
- Displays
- Electrohydraulic Power Steering
- Electrohydraulics
- Hvdraulic Power Steering
- Integrated Systems
- Joysticks and Control Handles
- Microcontrollers and Software
- Open Circuit Axial Piston Pumps
- Orbital Motors
- PLUS+1° GUIDE
- Proportional Valves
- Sensors
- Steering
- Transit Mixer Drives

Danfoss Power Solutions is a global manufacturer and supplier of high-quality hydraulic and electronic components. We specialize in providing state-of-the-art technology and solutions that excel in the harsh operating conditions of the mobile off-highway market. Building on our extensive applications expertise, we work closely with our customers to ensure exceptional performance for a broad range of off-highway vehicles.

We help OEMs around the world speed up system development, reduce costs and bring vehicles to market faster.

Danfoss - Your Strongest Partner in Mobile Hydraulics.

Go to www.powersolutions.danfoss.com for further product information.

Wherever off-highway vehicles are at work, so is Danfoss. We offer expert worldwide support for our customers, ensuring the best possible solutions for outstanding performance. And with an extensive network of Global Service Partners, we also provide comprehensive global service for all of our components.

Please contact the Danfoss Power Solution representative nearest you.

Comatrol

www.comatrol.com

Turolla

www.turollaocg.com

Hydro-Gear

www.hydro-gear.com

Daikin-Sauer-Danfoss

www.daikin-sauer-danfoss.com

Local address:

Danfoss Power Solutions (US) Company 2800 East 13th Street Ames, IA 50010, USA Phone: +1 515 239 6000 Danfoss Power Solutions GmbH & Co. OHG Krokamp 35

D-24539 Neumünster, Germany Phone: +49 4321 871 0 Danfoss Power Solutions ApS Nordborgvej 81 DK-6430 Nordborg, Denmark Phone: +45 7488 2222 Danfoss Power Solutions Trading (Shanghai) Co., Ltd. Building #22, No. 1000 Jin Hai Rd Jin Qiao, Pudong New District Shanghai, China 201206 Phone: +86 21 3418 5200

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without changes being necessary in specifications already agreed.

All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype are trademarks of Danfoss A/S. All rights reserved.